Principios Fundamentales de la Termodinámica y sus Aplicaciones

Principios Fundamentales de la Termodinámica

Procesos Termodinámicos

Un proceso termodinámico es la transformación en la cual un sistema intercambia energía con su entorno, transitando de un estado inicial de equilibrio a otro estado final de equilibrio. Un sistema se considera en equilibrio cuando cumple con las siguientes condiciones:

  • Equilibrio Químico: La composición del sistema no varía.
  • Equilibrio Mecánico: No existen movimientos observables macroscópicamente.
  • Equilibrio Térmico: La temperatura es uniforme en todo el sistema.

Según el estado de equilibrio, las transformaciones pueden clasificarse en:

  • Reversibles: Se efectúan a través de una sucesión de estados de equilibrio, permitiendo regresar a un estado anterior en cualquier momento.
  • Irreversibles: La transformación no se encuentra en equilibrio en algún punto y no es posible retornar a una situación anterior.

Existen varios tipos de transformaciones termodinámicas:

  • Adiabáticas: $\Delta Q = 0$
  • Isotermas: La temperatura ($T$) es constante.
  • Isócoras: El volumen ($V$) es constante.
  • Isobáricas: La presión ($P$) es constante.

Primer Principio de la Termodinámica: Concepto de Trabajo

El primer principio de la termodinámica establece que la energía no se crea ni se destruye, solo se transforma. En termodinámica, la energía se clasifica en dos tipos:

  • Calor (Q): Energía transferida debido a una diferencia de temperatura.
  • Trabajo (W): Cualquier forma de energía que no sea calor.

El primer principio se enuncia como la variación de la energía total de un sistema es igual a la suma de los intercambios de calor ($Q$) y trabajo ($W$). Esta variación corresponde a la variación de la energía interna ($\Delta U$).

El calor ($Q$) y el trabajo ($W$) son positivos cuando son realizados por el entorno sobre el sistema.

Concepto de Entalpía

La entalpía ($H$) surge de la observación de que la energía interna a volumen constante depende únicamente del calor. Para procesos donde hay pérdida de energía por calor, se introduce la entalpía para considerar estos trabajos. La entalpía se define como $H = Q – V \Delta P$. El valor de la entalpía indica si una reacción es exotérmica o endotérmica. En un proceso exotérmico, $\Delta H < 0$, y en uno endotérmico, $\Delta H > 0$.

Aplicaciones del Primer Principio de la Termodinámica

  • En un proceso isotermo, la temperatura es constante, por lo tanto, $\Delta Q = \Delta W$.
  • En un proceso isócoro, el volumen es constante, lo que implica $\Delta H = Q_v$. Este calor, al ser a volumen constante, se denomina calor a volumen constante.
  • En un proceso isobárico, la presión es constante, resultando en $\Delta H = Q_p$. Este calor se denomina calor a presión constante.
  • En un proceso adiabático, el calor es cero ($\Delta Q = 0$), por lo que $\Delta U = W$.

Reacciones Químicas y Termoquímicas

Para que ocurra una reacción química, se requiere energía para romper enlaces existentes y formar nuevos enlaces. Si la energía de los enlaces rotos es menor que la de los enlaces formados, la reacción es exotérmica; en caso contrario, es endotérmica.

Una ecuación termoquímica debe especificar el estado físico de los reactivos y productos, así como las condiciones de presión y temperatura a las que se lleva a cabo la reacción. Comúnmente, se utilizan condiciones estándar. Se adopta un valor de cero para la entalpía de los elementos en su forma más estable. Existen dos tipos principales de entalpía estándar: de formación y de combustión.

Entalpía de Enlace

La formación de un producto implica la ruptura de enlaces y la formación de nuevos. Esto conlleva un consumo de energía en la ruptura y un desprendimiento de energía en la formación.

Ley de Hess

La variación de entalpía es una función de estado, lo que significa que solo depende del estado inicial y final, no del camino seguido. Si una reacción puede ocurrir en varias etapas, la entalpía total de la reacción es la suma de las entalpías de las reacciones intermedias.

Imagen

Segundo Principio de la Termodinámica: Concepto de Entropía

Un proceso espontáneo es aquel que ocurre en un sistema sin intervención exterior. Estos procesos tienden hacia el equilibrio termodinámico y no se invierten. Los procesos espontáneos son irreversibles y conducen a un aumento del desorden. Para cuantificar este desorden, se introduce la entropía ($S$), una función de estado. La variación de entropía ($\Delta S$) se calcula como la diferencia entre la entropía de los productos y la de los reactivos, multiplicada por sus respectivos coeficientes estequiométricos.

Al ser la entropía una función de estado, solo es posible medir su variación.

Imagen

Energía Libre de Gibbs

Gibbs y Helmholtz establecieron la relación entre la variación de entalpía y la variación de entropía mediante una nueva función denominada energía libre (o entalpía libre), comúnmente conocida como energía libre de Gibbs ($G$).

La energía libre de formación ($\Delta G^\circ_f$) se define como la variación de energía libre que ocurre cuando se sintetiza un mol de un compuesto a partir de sus elementos en su estado estándar.

Imagen

La variación de la energía libre de Gibbs ($\Delta G$) permite predecir la espontaneidad de una reacción. En procesos espontáneos (exotérmicos), $\Delta G < 0$. En procesos no espontáneos (endotérmicos), $\Delta G > 0$. Para estudiar la espontaneidad, se analiza $\Delta G$, ya que este criterio tiene validez general.

Energía Libre de Gibbs (Repetición)

Gibbs y Helmholtz establecieron la relación entre la variación de entalpía y la variación de entropía mediante una nueva función denominada entalpía libre, energía libre de Gibbs o energía libre.

Se define como energía libre de formación ($\Delta G^\circ_f$) como la variación de energía libre que sucede cuando se sintetiza 1 mol de un compuesto a partir de sus elementos en estado estable.

Imagen

La $\Delta G$ nos permitirá saber si una reacción es espontánea o no. En procesos espontáneos (exotérmica), $\Delta G < 0$, en un proceso no espontáneo (endotérmico), $\Delta G > 0$. Para estudiar la espontaneidad vamos a estudiar la $\Delta G$, ya que este criterio tiene validez general.